

AZƏRBAYCAN RESPUBLİKASININ PREZİDENTİ YANINDA ELMİN İNKİŞAFI FONDU

Azərbaycan Respublikasının Prezidenti yanında Elmin İnkişafı Fondunun 2014-cü ildə keçirilmiş 6-cı "Mobillik qrantı" müsabiqəsinin (EİF-Mob-6-2014-3(18)) qalibi olmuş layihə üzrə

ELMİ-TEXNİKİ HESABAT

Layihənin nömrəsi: EİF-Mob-6-2014-3(18)-07/03/4-M-06 Layihənin adı: Metal nanohissəciklərinin iştirakı ilə fosfortərkibli ion-mübadilə qətranlarının termiki destruksiyası Müqavilənin imzalanma tarixi: 06 may 2015-ci il Layihə rəhbərinin soyadı, adı və atasının adı: Alosmanov Rasim Mirəli oğlu

Layihənin yerinə yetirilmə müddəti: 30 gün

Layihənin başlama və bitmə tarixi: 01 iyun 2015-ci il- 01 avqust 2015-ci il

Qrantın məbləği: 7800 manat

1	Qısamüddətli elmi təcrübənin keçirildiyi ölkə və şəhər	Almaniya, Münhen
2	Qısamüddətli elmi təcrübənin keçirildiyi təşkilatın və ya onun struktur bölməsinin tam rəsmi adı	Ətraf mühitin gigiyenası üzrə Alman tədqiqatlar mərkəzi, Ekoloji kimya institutu
3	Təcrübəkeçmə nin baş tutduğu təşkilat	Ralf Zimmermann
		1

	11 1	
	rənbərinin aai	
4	Təcrübəkeçmə nin baş tutduğu təşkilatda təcrübəkeçməy ə məsul şəxsin adı	Ralf Zimmermann
5.	Layihənin icra müddəti (dəqiq gediş- gəliş vaxtı dəqiq göstərilməli)	01.06.2015-30.06.2015
6	Təcrübəkeçmə dən əldə edilən elmi nəticələr, onların yenilik dərəcəsi, təcrübəkeçmən in elmi və praktiki əhəmiyyəti	Layihə çərçivəsində tədqiqatlar əsasən iki istiqamətdə aparılmışdır. 1. Tərkibində metal ionları və metal nanohissəcikləri olan fosfortərkibli ion- mübadilə qətranının termiki destrusiyasının tədqiqi 2. Prosesin kinetikasının öyrənilməsi. 1. Nümünələrin termiki analizi Termoqravimetric təcrübələr NETZSCH STA 449 F3 Jupiter, TG 209/cell, TG-FTİR və TG-QMS 403 Acolos Termiki Analis Sistemlərində 20 – 850°C temperatur intervalında, Al ₂ O ₃ tigellərində aparılmışdır. Sistemləri sxematik olaraq aşağıdakı kimi göstərmək olar (Şəkil 1). 5. Səkil 1. TG-QMS 403 Acolos Termiki Analis Sisteminin sxematik görünüşü Ölçmələr sintetik hava mühitində (80 % oksigen qazı, 20% azot qazı) (35 ml dəq ⁻¹) beş müxtəlif qızdırılma sürətində (β=1, 5, 10, 15 və 20 10 K dəq ⁻¹) havada qurudulmuş toz halında olan nümunələri üçün aparılmışdır. Nümunələrin kütləsi 10.000±1.000 mq olmuşdur. Alınmış nəticələrin müqayisəli izahı üçün ayvəlcə ilkin fosfortərkibli ion-mübadilə qətranının analoji şəraitdə analizi aparılmışdır. Termiki deştruksiyanın "kütlə itkisi – temperatur" koordinatlarında əyriləri 2-ci şəkildə

Əyrilərdən göründüyü kimi ionitin kütlə itkisi əsasən üç mərhələdə baş verir.
Bu mərhələlərin bir-birindən dəqiq ayrılması və prosesin temperatur xüsusiyyətlərinin müəyyənləşdirilməsi üçün hər qızdırılma sürətində TG – DTG əyriləri qurulmuşdur. Nümunənin 1 K/dəq sürətilə qizdırılması üçün uyğun əyri 3-cü şəkildə verilmişdir. Analoji asılıqlar digər qızdırılma sürətləri üçün də müəyyənləşdirilmişdir.

Qurulmuş əyrilərə görə nəticələr 1-ci cədvəldə toplanmışdır. Cədvəldə uyğun olaraq T_o – mərhələnin başlanma temperaturu və T_i – mərhələnin maksimum

sürətinə uyğun temperaturdur.

Cədvəl 1. Fosfortərkibli ion-mübadilə qətranının müxtəlif qızdırılma sürətlərində kütlə dəyişməsi və termiki destruksiyasının temperatur xüsusiyyətləri

			1	susu	31, 3, 0, 0				
Nüm.	Qızd.	Bi	rinci ma	orhələ			Ikinci mə	rhələ	
Kütl.,	sürət,	Temper.	T _o ,	T _i ,	Δm,	Temper.	T _o ,	T _i ,	Δm,
mq	K	interv,	°C	°C	%	interv,	°C	°C	%
		°C				°C			
10.365	1	36÷105	39.2	44.2	4.21	105÷274	157.5	193.5	19.84
10.332	5	36÷129	56.0	82.7	4.42	129÷294	179.4	214.1	19.06
10.356	10	36÷140	66.8	101.8	4.52	140÷306	190.9	225.8	19.09
10.428	15	36÷149	72.8	107.5	4.39	149÷313	198.3	232.0	18.26
10.050	20	36÷156	75.9	113.0	4.57	156÷319	204.0	238.3	17.96
			1_01	opdy	alin	davami	11		

	1-010	lauvam	i uavam	
Üç	Qalıq, % (°C)			
Temper. interv, °C	T₀, °C	T _i , ℃	Δm, %	
274÷500	321.9	365.4	35.17	26.50 (842.4)
294÷560	352.8	396.6	36.81	36.27 (842.3)
306÷580	375.0	423.6	39.32	31.53 (842.4)
313÷590	388.5	436.1	39.99	32.98 (841.8)
319÷600	397.0	441.9	40.35	32.83 (842.6)

Cədvəldən göründüyü kimi birinci mərhələdə kütlə itkisinə uyğun temperatur intervalı qızdırılma sürətindən asılı olaraq 36÷156°C temperatur intervalında yerləşir. Sürətin artması ilə bu mərhələ üçün prosesin sonaçatma temperaturu və temperatur xüsusiyyətləri nisbətən böyük qiymətlərə doğru sürüşür. Kütlə itkisi 4.21 və 4.57 % intervalında dəyişir. Nümunələrin havada qurudulmasını əsas götürərək demək olar ki, birinci mərhələdə kütlə itkisi sərbəst suyun buxarlanması hesabına baş verir. Prosesin nisbətən aşağı temperaturda baş verməsi və sonra aparılmış təcrübələr buna əsas verir.

Ikinci mərhələdə proses qızdırılma sürətindən asılı olaraq 105, 129, 140, 149 və 156°C temperaturda başlayır və 274÷319°C temperaturda sona çatır. Bu mərhələdə də temperatur xüsusiyyətləri nisbətən böyük qiymətlərə doğru sürüşür. Kütlə itkisi 17.96÷19.84 % intervalında dəyişir və nümünənin qızdırılma sürətinin artması ilə uyğun göstərici təcrübi xəta daxilində müəyyən qədər azalır. Bir qayda olaraq, yuxarıda göstərilmiş temperatur intervallarında adətən funksional qrupun müvafiq çevrilmələri baş verir. TG-FTİR və TG-QMS qoşulmuş cihazlarda aparılmış təcrübələr göstərir ki, bu mərhələdə su və hidrogen xlorid ayrılır. Suyun ayrılmasını turşu qruplarının anhidridləşməsi, hidrogen xloridin ayrılmasını isə yan qruplarda xlorun mövcudluğu ilə izah etmək olar.

Cədvəldən göründüyü kimi üçüncü mərhələnin başlanma temperaturu 274÷319°C temperatur intervalına düşür. Bu mərhələ ion-mübadilə qətranının destruksiyası, yəni əsas zəncirdə C – C rabitəsinin qırılması xarakterikdir. Göründüyü kimi nümunənin qızdırılma sürəti yüksəldikcə prosesin temperatur xarakteristikaları da yüksək temperatur sahəsinə doğru sürüşür. Kütlə itkisi qızdırılma sürətindən asılı olaraq 35÷41 % intervalında dəyişir. Parçalanma məhsullarının İQ-spektroskopiya və kvadrupol mass-spektrometrdə analizi göstərir ki, bu mərhələdə əsasən üzvi birləşmələr, onların xlorlu və fosforlu törəmələri ayrılır (Şəkil 4).

Şəkil 4.Fosfortərkibli ion-mübadilə qətranının TG-QMS sistemində analizinin nəticələri

Təcrübənin sonunda müəyyən olunmuşdur ki, termiki destruksiyanın qalıq məhsulu qızdırılma sürətindin asılı olaqar 26÷37 % təşkil edir.

Sonrakı mərhələdə uyğun şəraitlərdə tərkibində metal ionları və nanohissəciklər olan ionitlərin termiki analizi tədqiq edilmişdir. Nəticələr 2 – 5-ci cədvəllərdə verilmişdir.

Cədvəl 2. Tərkibində Ni²⁺ ionları olan fosfortərkibli ion-mübadilə qətranının müxtəlif qızdırılma sürətlərində kütlə dəyişməsi və termiki destruksiyasının temperatur xüsusiyyətləri

Nüm.	Q1Z.	E	Birinci mər	hələ			Ikinci m	ərhələ	
Kütl.,	sür,	Temp.	Τ.,	T _i ,	Δm,	Temp.	Τ₀,	T _i ,	Δm, %
mq	Κ	interv,	°C	°C	%	interv, °C	°C	°C	
		°C					7		
10.457	1	36÷155	51.2	103.3	9.15	155÷303	183.4	209.6	17.55
10.525	5	36÷175	85.8	143.3	8.75	175÷320	202.9	227.0	16.73
10.488	10	36÷188	98.7	162.1	8.59	188÷332	214.7	2 <mark>39.1</mark>	16.78
10.161	15	36÷196	108.9	173.5	8.05	196÷346	223.8	248.8	16.89
10.078	20	36÷203	101.3	160.0	8.90	203÷350	228.8	252.3	16.63

	Üçüncü mərhələ									
Temp. interv, °C	T₀, °C	T₁, °C	Δm, %							
303÷500	380.3	403.7	39.72	14.68 (842.7)						
320÷560	403.0	431.3	39.40	29.87 (841.9)						
332÷580	419.8	449.9	40.49	29.82 (841.9)						
346÷590	430.8	462.8	40.82	31.14 (842.5)						
350÷600	437.4	471.3	40.11	33.38 (842.6)						

2-ci cədvəlin davamı

Cədvəl 3. Tərkibində Fe³⁺ ionları olan fosfortərkibli ion-mübadilə qətranının müxtəlif qızdırılma sürətlərində kütlə dəyişməsi və termiki destruksiyasının temperatur xüsusiyyətləri

Nüm.	Qız.		Birinci mə	rhələ			Ikinci m	ərhələ	
Kütl.,	sür,	Temp.	Τ₀,	T _i ,	Δm,	Temp.	Т,,	T _i ,	Δm, %
mq	K	interv,	°C	°C	%	interv,	°C	°C	
		°C				°C			
10.384	1	36÷131	42.6	77.3	5.31	131÷287	177.4	201.3	18.0
9.905	5	36÷148	65.8	111.5	4.33	148÷331	197.1	221.3	17.27
10.301	10	36÷135	74.0	116.8	3.33	135÷327	207.4	234.9	18.93
10.361	15	36÷156	39.1	39.8	3.68	156÷342	217.2	243.8	18.24
10.138	20	36÷176	-	-	3.99	176÷351	226.1	250.3	17.12

3-cü cədvəlin davamı

	Üçüncü mərhələ								
Temp. interv, °C	T₀, °C	T _i , ℃	Δm, %						
287÷500	354.6	377.5	41.43	24.18 (842.7)					
313÷560	383.2	415.7	41.79	33.82 (842.1)					
327÷580	400.7	435.2	43.58	27.94 (842.0)					
342÷590	414.7	449.7	44.54	29.83 (842.3)					
351÷600	423.9	456.8	45.24	30.24 (842.5)					

Cədvəl 4. Tərkibində Co²⁺ ionları olan fosfortərkibli ion-mübadilə qətranının müxtəlif qızdırılma sürətlərində kütlə dəyişməsi və termiki destruksiyasının temperatur xüsusiyyətləri

Q1Z.		Birinci mər	rhələ			Ikinci m	ərhələ	
sür,	Temp.	Т.,	T _i ,	Δm,	Temp.	T _o ,	T _i ,	Δm, %
K	interv,	°C	°C	%	interv,	°C	°C	
	°C				°C			
1	36÷141	46.2	92.7	8.40	141÷300	171.4	191.2	17.47
5	36÷165	78.9	133.6	8.14	165÷322	193.1	215.3	16.03
10	36÷173	73.7	117.4	8.39	173÷334	200.7	225.9	16.77
15	36÷178	104.7	158.3	6.25	178÷349	209.9	236.0	16.78
20	36÷180	40.7	43.1	4.99	180÷358	212.0	239.1	18.04
	Qız. sür, K 1 5 10 15 20	Qiz. sůr, Temp. K [°] C 1 36÷141 5 36÷165 10 36÷173 15 36÷178 20 36÷180	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	4-ci	i cədvəlin d	avamı	
	Üçüncü m	ərhələ		Qalıq, % (°C)
Temp. interv, °C	T _o , °C	T _i , °C	Δm, %	
300÷500	377.8	401.7	38.28	20.48 (842.6)
322÷560	410.3	435.1	38.60	35.42 (842.0)
334÷580	422.8	451.9	39.26	31.90 (842.0)
349÷590	433.6	463.4	39.99	34.04 (842.4)
358÷600	443.0	472.6	41.05	33.35 (842.5)

Cədvəl 5. Tərkibində Fe₃O₄ hissəcikləri olan fosfortərkibli ion-mübadilə qətranının müxtəlif qızdırılma sürətlərində kütlə dəyişməsi və termiki destruksiyasının temperatur xüsusiyyətləri

Nüm.	Qız.		Birinci n	ıərhələ			Ikinci m	ərhələ	
Kütl.,	sür,	Temp.	To,	T _i ,	Δm, %	Temp.	T _o ,	T _i ,	Δm, %
mq	K	interv,	°C	°C		interv,	°C	°C	
		°C				°C			
10.337	1	36÷160	39.6	44.9	11.68	160÷325	222.5	290.1	9.81
10.340	5	36÷186	53.6	69.7	14.60	186÷345	248.6	312.8	8.14
10.246	10	36÷201	62.5	83.7	14.99	201÷358	271.1	328.8	8.54
9.887	15	36÷206	68.1	93.0	14.83	206÷368	278.4	338.4	8.56
10.089	20	36÷210	72.8	100.6	13.35	210÷372	288.3	346.0	8.36

5-cədvəlin davamı

	Üçüncü mərhələ									
Temp. interv, °C										
325÷500	385.0	407.1	34.41	35.24 (842.5)						

345÷560	406.1	433.5	34.01	43.04 (842.5)
358÷580	418.5	448.4	34.87	38.97 (842.6)
368÷590	425.7	456.3	34.83	39.90 (842.2)
372÷600	431.3	462.7	35.62	40.80 (842.3)

1–5-ci cədvəllərin müqayisəli analizi ilə aşağıdakılar müəyyənləşdirilimişdir:

- metal ionları ionitlərin termiki destruksiyasının birinci mərhələsinə birmənalı təsir etmir. Göründüyü kimi ionitlərin tərkibində Ni²⁺ ionları olduqda birinci mərhələdə kütlə itkisi əhəmiyyətli dərəcədə artır, Fe³⁺ və Co²⁺ ionlarının təsiri isə nisbətən azdır.

- metal ionları ionitlərin termiki destruksiyasının ikinci mərhələsinə çox da təsir etmir.

Alınmış bu nəticələri onunla izah etmək olar ki, birinci mərhələdə sərbəst suyun ayrılması, ikinci mərhələ ilə turşu qruplarının ahhidridləşməsi baş verir və bütün funksional qruplarda metal ionları olmur.

- metal ionları ionitlərin termiki destruksiyasının üçüncü mərhələsinə katalitik təsir göstərir və bu mərhələ üçün kütlə itkisi birmənalı olaraq artır.

- ionitlərin tərkibində nanohissəciklərin olması termiki destruksiyanın hər üç mərhələsinə təsir edir. Göründüyü kimi ionitin tərkibində nanohissəcik olduqda birinci mərhələdə kütlə itkisi 11÷15% intervalında dəyişir. Artıq qeyd olunduğu kimi, ilkin ionitdə bu göstərici 4% ətrafındadır. Ikinci mərhələdə isə ilkin ionitlə müqayisədə kütlə itkisi kəskin azalaraq 8÷10% təşkil edir. Destruksiyanın uçüncü mərhələsində ionitdə Fe₃O₄ nanohissəciklərinin olması kütlə itkisini cüzi zəiflədir. Bunu onunla izah etmək olar ki, ionitin əsas zəncirində C–C rabitəsinin qırılması ilə ayrılan üzvi birləşmələr sintetik hava mühitində nanohissəciklə uyğun şəraitdə uçucu olmayan birləşmələr əmələ gətiriri.

Qeyd etmək lazımdır ki, ionitin tərkibində dəmir, kobalt və nikel hissəikləri olduqda termiki destruksiyanın birinci və ikinci mərhələlərində elə bir dəyişiklik olmur. Üçüncü mərhələdə isə kəskin kütlə axalması baş verir. Bu onu göstərir ki, C– C rabitəsinin qırılmasında metal hissəciklərin katalitik təsiri onların ion formaları ilə daha çoxdur.

Yuxarıda göstərilmiş bu nəticələr 5-ci şəkildə daha aydın görünür.

Şəkil 5. Tərkibində Fe³⁺, Co²⁺, Ni²⁺ və Fe₃O₄ olan fosfortərkibli ionitin müqayisəli termiki analizi: qızdırılma sürəti – 10 K/dəq, qara xətt – ilkin ionit, yasıl xətt – Fe₃O₄ hissəcikli, qırmızı xətt – Co²⁺, göy xətt – Ni²⁺, qəhvəyi xətt – Fe³⁺ Sonrakı mərhələdə termiki destuksiyanın kinetikası tədqiq edilmişdir.

2. Nümünələrin termiki destruksiyasının kinetikası

Qeyri-izotermal şəraitdə termiki destruksiyanın kinetikası üçün sərbəst (*Friedman, Ozawa-Flynn-Wall, ASTM E698*) və "uyğun metod" modelləri tətbiq olunmuşdur. Nəticələr 6 və 7-ci cədvəllərdə toplanmışdır.

Cədvəl 6. Tərkibində metal ionları və Fe₃O₄ hissəcikləri olan fosfortərkibli ion-mübadilə qətranının termiki destruksiyasının *Friedman, Ozawa-Flynn-Wall, ASTM E698* sərbəst modellərinə görə kinetik parametrləri

Nümunələr			Birinci mərl	າອງອ			
		nol	lg A				
	Friedman	OFW	ASTM E698	Friedman	OFW	ASTM E698	
FTİ	60.5	-	34.5	6.1	-	1.7	
FTİ-Co ²⁺	62.3	-	36.2	6.4	-	2.3	
FTİ-Ni ²⁺	69.2	65.1	50.8	6.7	6.4	4.1	
FTİ-Fe ³⁺	64.2	-	50.1	6.3	-	4.5	
FTİ-Fe ₃ O ₄	64.1	64.7	40.4	7.2	7.8	3.3	

İkinci mərhələ						Üçüncü mərhələ					
Ea, kC/mol			lg A			Ea, kC/mol			lg A		
Friedm	OF	AST	Friedm	OF	AST	Friedm	OF	AST	Friedm	OF	AST
an	W	Μ	an	W	Μ	an	W	Μ	an	W	Μ
		E69			E69			E69			E69
		8			8			8			8
130.2	125.	120.1	11.3	11.4	10.4	140.5	136.2	138.2	8.8	8.2	8.1
	1										
121.4	122.	119.0	9.6	10.1	10.1	155.1	158.1	160.1	10.3	9.7	9.3
	2										
145.1	135.	152.3	12.1	11.7	13.2	172.8	176.	152.2	10.2	10.	8.8
	3						1			6	
124.2	120.	142.5	10.3	10.1	12.5	154.2	146.	123.0	9.3	9.6	6.7
	1						8				
154.5	139.	121.2	11.6	11.2	8.5	221.2	228.	214.7	13.4	14.	13.4
	7						1			8	

6-cı cədvəlin davamı

Cədvəl 7. Tərkibində metal ionları və Fe₃O₄ hissəcikləri olan fosfortərkibli ion-mübadilə qətranının termiki destruksiyasının uyğun modellərinə görə kinetik parametrləri

			T	
Nümunə	Mərhələ (uyğun	Ea, kC/mol	lg A	Uyğun modelin
	model)			parametrləri
FTİ	I (An)	51.1	6.4	0.87
	II (Fn)	113.8	10.1	2.91
	III (Fn)	137.4	8.3	1.86
FTİ-Co ²⁺	I (D3)	68.1	5.5	-
	II (Fn)	119.7	10.1	3.2
	III (C1)	165.6	9.6	-0.5
FTİ-Ni ²⁺	I (D3)	68.1	1.97	-
	II (Fn)	135.6	11.8	3.2
	III (An)	186.1	11.4	0.83
FTİ-Fe ³⁺	I (Fn)	77.1	8.3	3.3
	II (Fn)	112.8	9.6	2.8
	III (Cn)	152.4	8.9	1.6
FTİ-Fe ₃ O ₄	I (Fn)	63.1	7.2	2.8
	II (D3)	115.0	7.1	-
	III (Fn)	224.6	14.2	1.1

Alınmış nəticələrdən göründüyü kimi ionitin tərkibində metal ionları və nanohissəciklərin olması hər üç mərhələdə termiki destruksiyanın mexanizminə də təsir edir. Beləliklə, ionitdəki metal ionları və hissəciyi dəyişməklə ionitin parçalanmasına təsir etmək mümkündür. Sonda parçalanmadan sonra tigellərdəki qalıq analiz edilmiş, müəyyən olunmuşdur ki, bu qarışıq əsasən nanohissəcikli oksidlərdən ibarətdir.

7.	Təcrübəkeçmə zamanı istifadə olunmuş üsul və yanaşmalar	Təcrübəkeçmə zamanı termoqravimetriya metodundan istifadə olunmuş, proses qeyri/izotermal şəraitdə aparılmişdir. Presesin kinetik parametrləri sərbəst (<i>Friedman, Ozawa-Flynn-Wall, ASTM E698</i>) və "uyğun metod" modelləri ilə işlənmişdir. Bunun üçün <i>NETZSCH-Thermokinetics 3.1 Software Help</i> paket proqramı tətbiq olunmuşdur.
8	Təcrübəkeçmə zamanı əldə olunmuş nəticələrin gözlənilən tətbiq sahələri (konkret olaraq qeyd etməli)	Təcrübəkeşmə zamanı əldə edilmiş nəticələr istifadə olunmuş ion-mübadilə qətranlarının zərərsizləşdirilməsi üçün tətbiq oluna bilər. Belə ki, təcrübəkeçmə zamanı işlənilib hazırlanmış optimal şərait respublika ərazisində olan su təmizlənmə qurğuları, Heydər Əliyev adına Bakı Neft Emalı Zavodu və "Azerneftyağ" Neft Emalı zavodunun bərk tullantiları olan "çirklənmiş" ionitlərin sonrakı istifadəsində yararlıdır. Digər tərəfdən ionitlərin termiki destruksiyasından alınmış nanokompozitlər müxtəlif sahələrdə (elektrik keçirici material kimi, bərk faza ilə ekstarksiya üçün ekstragent kimi və s.) tətbiq oluna bilər. Bununla bərabər təcrübəkeçmə zamanı tərəfimdən öyrənilmiş metod, üsul və vərdişlər Bakı Dövlət Universitetində olan uyğun cihazlarda da tətbiq oluna bilər.

Layihə rəhbərinin imzası _____

Tarix _____